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Summary 

This paper deals with the proportional means regression model for the analysis of recurrent 

event data proposed by Lawless and Nadeau (LN) and based on the mean function. Appealing 

features of this model are that it is simple and robust, being based on moment estimates, it 

allows a pictorial representation of the rate of recurrence and can be considered a 

straightforward extension of the Cox model to recurrence data. Furthermore, it is shown that, 

under particular circumstances, the LN regression model gives the same estimates for 

regression coefficients as the standard Poisson regression based only on the counts, without 

knowledge of the recurrence times. We apply the LN method to two real-life datasets from the 

bio-medical field and provide a set of functions, written in the open source language R, which 

expands the available tools for the applied researcher; these functions estimate the cumulative 

mean function as well as the parameters of the LN proportional means regression model.  

 

 

KEY WORDS: counting processes, cumulative mean function, mean function, Poisson 

processes, proportional means, recurrent data. 
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Introduction 

Survival analysis is a powerful and flexible method for identifying associations between an 

outcome and a number of prior exposures to risk factors. In this setting, Cox’s proportional 

hazards model (1) is the most commonly used technique; being semiparametric, it is more 

attractive than a fully parametric model which places constraints on distributional assumptions. 

There is growing interest in the analysis within longitudinal study designs where the event of 

interest can occur repeatedly in the same individual. For example, a patient diagnosed with a 

skin cancer can relapse over time, or a subject with a psychiatric diagnosis can have multiple 

contacts with psychiatric health services. 

It is not possible to apply the standard Cox model to multiple failure times, since the assumption 

of independence between event times within individuals would be violated. As a result, the time 

to first event is commonly used for events that occur repeatedly. 

Alternatively, the time between repeated occurrences can be ignored and multiple event data 

can be analysed, considering only the total number of events (occurring in a fixed period of 

time) and resorting to statistical models for counts, such as the Poisson model or the negative 

binomial regression model. 

Several models and methods have been proposed in the literature to deal with recurrent event 

data; see Lawless (2), Kelly and Lim (3), Therneau and Hamilton (4), Therneau and Grambsch 

(5), and, for a review and a discussion, Cook and Lawless (6). Among these methods, one, 

proposed in 1995 by Lawless and Nadeau (7), seems, in our opinion, particularly appealing for 

the clinical researcher, since, as we will see, it allows a pictorial representation of the rate of 

recurrence and can be regarded as a simple and robust straightforward extension of the Cox 

model to recurrence data. This approach, which is based on the cumulative mean of the events, 

does not involve a full probabilistic specification of the processes, but requires knowledge of 

the individual times at which events occur.  
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Despite these appealing characteristics, little use has been made of this technique in clinical 

research studies. A search of Scholar Google (http://scholar.google.it), focusing on articles 

published during 2007 and the first months of 2008 and using the phrases “mean function”, 

“cumulative mean function” and “proportional means” gave over 600 references. However, 

only one article was published in a medical journal.  

To expand the available tools for the applied researcher, and to encourage use of the Lawless 

and Nadeau (LN) approach to the analysis of recurrent event data, we present a set of functions 

written in the native R language (8), which provide both graphical tools as well as 

computational procedures for fitting the LN regression model. R is a free programming 

language and software environment for statistical computing. Being an open source, its code is 

freely distributed, under the GNU General Public Licence, through CRAN (http://cran.r-

project.org/), which is an acronym for the Comprehensive R Archive Network. 

 

Data examples 

To illustrate and motivate the development of the LN method for the analysis of recurrent 

events, we shall use two real-life datasets from the personal experience of the authors.  

Recurrence of cutaneous epitheliomas 

Cutaneous epitheliomas are the most common malignant neoplasms in the Caucasian 

population; the most frequent are basal cell carcinoma (BCC) and squamous cell carcinoma 

(SCC). Both BCC and SCC are characterised by a  relatively high frequency of recurrences. In 

the Italian province of Trento, a Skin Cancer Registry was established in 1992 with the aim of 

recording all cutaneous tumours occurring in the province’s  residents (9,10). We compare rates 

of occurrence of cutaneous epitheliomas according to gender and histotype, examining data 

available from this registry for the period January 1992 to December 1997. For each patient, 

the time of each new occurrence of skin cancer was recorded. A total of 2557 individuals were 

included in this study. During the follow up, 311 recurrences were observed in 226 patients, 
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while over 91% of subjects had no recurrence. The  maximum number of recurrences in a single 

patient was eight, recorded in one subject. The mean number of recurrences per patient was 

0.12 with a standard deviation of 0.48 (therefore the ratio between the variance and the mean 

was about 2:1). 

Patterns of psychiatric contacts in a psychiatric case register 

Psychiatric data collected in a psychiatric case register document contacts between residents 

and the psychiatry services of a selected geographical area. These data typically show a large 

number of subjects with a small number of contacts and, at the same time, a low number of 

subjects recording a high number of contacts. The data presented refer to patients entered in the 

South Verona Psychiatric Case Register (SVPCR) in the period 1 January 1979 to 31 December 

1991 (11, 12). All the subjects were followed up for 13 weeks after the day of their first contact. 

For each patient, the total number of contacts in the 91 days of follow up was known, as was 

the day on which each contact took place. The following covariates were available: gender, 

occupational status, diagnosis, referral source of the first contact, type of first contact. A total 

of 3454 subjects were included in this study, recording a total of 6913 contacts. The mean 

number of contacts per patient (in the 91 days) was 2.0 with a standard deviation of 3.7 

(therefore the ratio between the variance and the mean was about 7:1); 1589 subjects (46.0%) 

had no further contact, after the first one, during the study period while the highest number of 

contacts recorded for a single patient was 48; a total of 28 patients each had more than 20 

contacts during the follow up. 

Table 1 shows how these data were recorded in the first 14 patients. The total follow-up time 

and the total number of recurrences observed are given in the first two columns; the day on 

which each of the contacts took place is reported in the following columns. For example, the 

first subject had two contacts: the first after 41 days of follow up and the second 59 days after 

the start of the follow up. The fifth subject had no contact at all during the 91 days of follow 

up, so all the cells referring to the recurrence times are empty.  
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Table 1. Recurrence data recorded for the first 14 patients in the South Verona Psychiatric Case Register. 

 

In both datasets presented, the high ratio between the variance and the mean makes the Poisson 

assumption untenable; in fact, some patients were more prone to recurrent events than others, 

which suggests that a non-parametric or a semiparametric procedure is more appropriate, 

particularly to test for treatment differences.  

 

The cumulative mean function 

Let us consider k individuals, each observed for the follow-up time iτ  ),...,1( ki = . Let ri denote 

the observed number of events (recurrences) for subject i over the interval [ ]iτ,0  and 

iiri tt ≤≤ ...1  the times of events.  

For example, looking at the data reported in Table 1, the follow-up time for patient number 13 

was 9113 =τ days, during which a total number of recurrences 513 =r  were observed; the 

corresponding times 5,134,133,132,131,13 ttttt ≤≤≤≤  were, respectively, 40, 45, 54, 68, and 88. 

The cumulative mean function (CMF) of the number of recurrences )(tN i  occurring for the 

i−th individual over the interval ],0[ t  is defined as [ ])()( tNEtM i= , where )(tM , which is 

supposed to be the same for all the subjects, is the sum (or the integral, depending on the time 
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scale) of the mean function )(tm , i.e. the expected value of the number of events experienced 

at time t. In what follows, for the sake of simplicity, we refer to the discrete-time case.   

Under the assumption that the k individuals are mutually independent and that the )(tni ’s (i.e. 

the number of events observed at time t for the i−th individual) are independent Poisson random 

variables with mean )(tm , the maximum likelihood estimate of )(tm  is ).().()(ˆ ttntm δ=  (i.e. 

the mean number of events observed at time t over all the k individuals) and the estimate of 

)(tM  is ∑
=

=
t

s

ssntM
0

).().()(ˆ δ , i.e. the sum of the mean number of events observed up to time 

t. In fact, ∑
=

=
k

i

i snsn
1

)().(  is the total number of recurrences observed at time s and 

∑
=

=
k

i

i ss
1

)().( δδ  is the overall number of individuals under observation at time s, in which )(siδ  

is an indicator variable equal to one if individual i is under observation and “at risk” at time s, 

and zero otherwise.  

For example, in the SVPCR data, all the subjects were followed up for 91 days after being 

entered in the register, so that ).(sδ  is 3454 for all the times s, from s=1 to s=91 (in particular, 

3454)1.( =δ  and 3454)2.( =δ ). On the other hand, at day one from the start of the follow up, 

181 contacts were observed, so that 181)1.( =n ; at day two from the start of the follow up, 161 

contacts were observed, so that 161)2.( =n . The mean number of events observed at time 1 

was therefore 3454181)1.()1.()1(ˆ == δnm , while that observed at time 2 was 

3454161)2.()2.()2(ˆ == δnm . The cumulative mean number of events observed at time 2 was 

therefore ( ) ( ) 345416134541812ˆ1ˆ)2(ˆ +=+= mmM .  

The plot of )(ˆ tM  versus t yields information about the number of events expected by time t 

and whether two groups differ significantly in the expected number of events. The left panel of 

Figure 1 shows the estimated cumulative mean number of contacts recorded in the SVPCR data; 
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95% confidence intervals are also shown. The slope of )(ˆ tM  can be considered a failure rate, 

thereby allowing the plot of )(ˆ tM  to yield information on the event process. The occurrence of 

psychiatric contacts is higher in the first weeks and then declines, a pattern, well known to 

physicians (since patients need more attention, particularly in the initial phases of their illness), 

that is pictorially and quantitatively represented in Figure 1. After 4 weeks of follow up, the 

cumulative mean number of contacts is 1; instead, to obtain a cumulative mean of 2, thirteen 

weeks are needed. The differences in the cumulative means between subsequent weeks seem to 

show a steady decline. From a modelling point of view, the process of event occurrence 

considered here is a non-homogeneous Poisson process. Were the process homogeneous, the 

plot would show a straight line. 

As far as the cutaneous epitheliomas are concerned (Figure 1, right panel), the cumulative 

means of the numbers of recurrences after 1, 3, and 5 years of follow up are, respectively, 0.054, 

0.137 and 0.211. The differences in the cumulative means between subsequent years appear 

approximately constant (about 0.04 recurrence/year of follow up).  

 

 
Figure 1. Estimated cumulative mean function, together with 95% confidence limits, for the psychiatric contacts 

in South Verona (left panel) and for the recurrences of cutaneous epitheliomas (right panel). 
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The proportional means regression model  

In randomised clinical trials as well as in epidemiological settings, it is frequently deemed 

interesting to make comparisons among groups, possibly accounting for the effects of a number 

of covariates. For example, in the SVPCR data, we are interested in evaluating whether the type 

of the first contact (unplanned vs planned) is associated with the recurrence rate of subsequent 

contacts. The plot of the CMFs for these two groups is shown in the left panel of Figure 2. A 

higher recurrence rate is clearly evident in patients who entered the SVPCR with an unplanned 

contact. On the other hand, it appears that the recurrence rates in males and females are similar 

(see the right panel of Figure 2). However, what we need is a formal test of significance together 

with a quantitative measure of the “difference” between recurrence rates in the two groups. A 

regression model can provide an appropriate answer to both these needs. 

 
Figure 2. Estimated cumulative mean functions according to gender (right panel) and to the type of the first 

contact with the South Verona psychiatry services (left panel). 

 

The LN model is a semiparametric proportional means regression model based on the mean 

function )(tm , analogous to the proportional hazards model for lifetime data. The regression 
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model was set up including a multiplicative effect of a 1×p  vector ix  of fixed covariates 

(without the constant for the intercept term) on the mean function: ( ) ( ) )'exp(0 ii tmtm xb= , 

where ( ) 00 ≥tm  is a baseline mean function and b is a 1×p  vector of regression coefficients. 

In their paper, Lawless and Nadeau (7) considered the more general case ( ) ( ) ( )bx );(i0 tgtmtmi =

where g is a positive-valued function and the covariates can be time-dependent. 

Under the Poisson assumption, Lawless and Nadeau obtained the following estimating 

equations for the ( ) stm ' 0  and b: 

 ( ) ( ) ( ){ } 0)'exp(
1

0 =−∑
=

k

i

iii tmtnt xbδ         it τ,...,1,0=  [1] 
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where, as previously indicated, )(tni  represents the number of events that occur at time t for 

subject i and 1)( =tiδ  if it τ≤  and 0)( =tiδ  if it τ> . 

The authors noted that equation [1] gives 
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and inserting equation [3] in equation [2], they obtained the 1×p  system of equations in b 
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[4] 

This set of equations are Cox partial likelihood equations, meaning that packages that 

implement partial likelihood analysis of repeated events can be used to fit the proportional 

means model; for example, in the survival package of R (13), the function coxph can be used 
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to estimate the regression coefficients employing the so-called “start/stop” format for the 

recurrence data and the cluster option for the individuals in order to obtain robust standard 

errors. Otherwise, equation [4] can be solved iteratively using Newton’s method. 

If, as is the case with the SVPCR data, all the subjects are observed for the same follow-up time 

( )τττ === k...1  so that 1)( =tiδ  for all the times τ≤t , regardless of the subject, equations [4] 

can be simplified and it is possible to arrive at a meaningful interpretation. In fact, summing 

over all the times and indicating ( ) i

s

i nsn =∑
=

τ

0

(i.e. the total number of contacts of subject i) and 

nn
k

i

i =∑
=1

 (i.e. the total number of contacts observed), equations [4] can be rewritten in the much 

more compact way ∑∑
==

=
k

i

ii

k

i

ii nn
11

ˆ xx , where nwn ii =ˆ  and the iw ’s are weights (which sum to 

one) defined as 
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. In other words, the in̂ ’s are the recurrences expected in 

subject i on the basis of his “risk score”, given by )'exp( ixb  as a fraction of the “total risk 

score” ∑
=

k

i

i

1

)'exp( xb . In this case, equations [4] are analogous to the equations to be solved for 

the “standard” Poisson regression model, i.e. i

k
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)'exp(  where, however, b 

contains an intercept term so that the number of equations to be solved is 1+p . In actual fact, 

apart from the intercept, the estimates of the p regression coefficients are the same for the LN 

model and the Poisson regression model. As a corollary, in the particular case considered, the 

estimates of the regression coefficients of the LN model are unaffected by knowledge of the 

individual recurrence times.  
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Robust variance estimates for the regression parameters b̂ , accounting for the dependence 

structure of the recurrence times, can be computed as outlined in the appendix of the paper by 

Lawless and Nadeau (7). 

As far as significance tests and confidence intervals are concerned, the LN model showed that 

under mild conditions ( )bb −ˆk  is asymptotically normal. The accuracy of the approximation 

depends on the number of subjects (k), on the average counts per individual, and on the degree 

of overdispersion. According to the LN model, the approximation can be considered 

satisfactory when k is equal to 30 or more and the average count  per individual is greater than 

4 except when overdispersion is very large (variance at least five times that of the Poisson 

model). In this case the approximation is satisfactory if k is 90 or more. Under these 

prescriptions the asymptotic approximations are sufficiently accurate for practical use. 

The main assumption of the LN model is that, conditional on the covariate values, the end-of-

observation times iτ  are determined independently of the event process. If this is not the case, 

then )(ˆ tM  may be seriously biased. 

Lin et al. (14) provided a rigorous justification of the LN procedure through a modern empirical 

process theory. Furthermore, they developed both graphical and numerical methods based on 

Gaussian processes for checking the adequacy of the fitted model. 

 

Proportional means regression results  

The LN proportional means regression model was fitted to the two datasets considered. 

Estimates of the regression coefficients as well as the associated standard errors were obtained 

employing the R mfreg function described in the appendix. This function has the peculiarity of 

not requiring data in the “start/stop” format, which can be an advantage as many datasets are 

not organised in this “long” format. 
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The results relative to cutaneous epitheliomas are set out in Table 2. Males showed a higher 

number of recurrences than females (about 1.7 times that recorded in women), while a non- 

significant effect of histotype (as well as of the interaction between sex and histotype) was 

found. The finding of a similar biological behaviour between BCC and SCC is somewhat 

unexpected, since it is well known to dermatologists that BCC is a cancer with a higher 

probability of recurrence than SCC. However, in this study, multiple synchronous tumours were 

considered a single multifocal lesion (i.e. two or more tumours of the same histotype diagnosed 

in the same subject on the same day were considered a single recurrence); in this case (i.e. when 

only metachronous tumours were considered), the recurrence pattern of the two histotypes was 

quite similar. On the other hand, a higher recurrence rate in males is well known; however, 

employing the regression model we were able to quantify the gender effect (in univariate as 

well as in multivariate analyses), both as a point estimate and as a 95% confidence interval (1.2, 

2.3). 

 

 

Table 2. Parameter estimates for the proportional means regression on the recurrences of cutaneous epitheliomas 
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Table 3 shows the results of the analysis of the pattern of contacts with psychiatry services in 

South Verona. As far as the univariate analysis is concerned, since all the subjects were 

followed up for 91 days (so that the same number of subjects was at risk at each time), an exact 

solution can be obtained for the estimating equations of the LN model regression coefficients; 

for a categorical variable with k levels, coded with 1−k dummies, the estimate of the j-th 

regression coefficient is ( ) ( )[ ]00ln NnNn jj , where nj is the number of subjects in the category 

j+1 and Nj is the number of contacts had by the subjects in the category j+1 (the deponent 0 

indicates the reference category). With the exception of gender, all the other variables 

considered were associated with the number of contacts. 

 
Table 3. Parameter estimates for the proportional means regression on the recurrences of contacts with 

psychiatric services. 

 

This result was confirmed when the joint effect of all the considered variables was evaluated in 

a multivariate analysis (Table 3). A significantly higher number of contacts was found for 

unemployed subjects, for patients with an unplanned first contact, and for those who were self-

referred (or referred by relatives). As far as diagnosis is concerned, a higher number of contacts 

was found for schizophrenic patients.  

For comparison, Table 3 also gives the estimates of the regression coefficients from the Poisson 

model and from the negative binomial regression model estimated taking into account only the 
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total number of contacts and discarding the recurrence times. It is worth noting the striking 

difference in the estimated standard errors between the LN and the Poisson models – 2- to 3-

fold greater with the former than the latter – leading to more significant statistical tests (more 

significant than they actually are) and overly narrow confidence intervals when employing the 

naïve Poisson model. On the other hand, if we calculate standard errors for the Poisson model 

employing a robust sandwich estimator, the values obtained are the same as those obtained with 

the LN model. Furthermore, the estimates of the regression coefficients of the Poisson and of 

the LN models, too, were the same, as expected. We recall that this happens because all the 

follow-up times are the same, which is not generally the case. However, from a computational 

point of view, a Poisson regression model can be fitted to the recurrence data to obtain initial 

estimates for the regression coefficients in order to speed up the convergence of the Newton 

algorithm. The standard errors from the negative binomial regression are comparable with those 

obtained from the LN model. 

Informal graphical techniques developed for checking the adequacy of the Cox model in 

survival analysis can be employed for the LN model, too. A simple graphical evaluation of the 

proportionality assumption can be obtained by plotting the predicted CMF against the observed 

one for different groups. The left panel of Figure 3 shows this comparison for the SVPCR data 

relative to the type of the first psychiatric contact. Although there is no doubt about the 

prognostic role of this variable, it nevertheless appears that the proportionality assumption does 

not hold, particularly for the first weeks of follow up, where the model underestimates the 

cumulative mean number of contacts for patients with an unplanned first contact. Once again 

we can interpret this finding from a clinical point of view; in fact, the variable considered is a 

proxy for the severity of the psychiatric illness and patients with a more severe disease need 

more attention in the initial phases of their illness. However, as far as the Cox model is 

concerned, this violation does not invalidate the comparison between the two groups 

considered, since the observed lines are always well separated and do not cross. Therefore, 
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although a violation of the proportionality assumption is present, this violation does not appear 

crucial, hence we can employ the LN estimate of the “average” effect of the type of the first 

psychiatric contact as a quantitative tool for comparison with other studies. In the right panel 

of Figure 3, a similar comparison is shown for the effect of gender on the recurrences of 

cutaneous epitheliomas. In this case there is no evident departure from the proportionality 

assumption, as was also suggested by plots of the natural logarithm of )(ˆ tM  against time in 

males and females, which were roughly vertical translations of one another (data not shown). 

 
Figure 3. Left panel: estimated cumulative mean number of contacts with the South Verona psychiatry services 

according to the type of the first contact. Dotted lines represent predicted cumulative mean number of contacts 

according to the proportional means regression (see results reported in Table 3). Right panel: estimated 

cumulative mean number of recurrences of cutaneous epitheliomas according to gender. Dotted lines represent 

predicted cumulative mean number of contacts according to the proportional means regression (see results 

reported in Table 2). 

 

Since the mean number of recurrences was less than 4 in the two datasets analysed and the 

overdispersion in the SVPCR data was very large, we wonder whether the asymptotic 

approximation can be considered sufficiently accurate, given that the number of subjects was 

quite large. A bootstrap estimate of the sampling distribution of the regression coefficients 

performed with both datasets revealed quite good agreement with the normal distribution and a 
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bootstrap variance quite similar to the robust one. A second check was performed running four 

simulations employing the SVPCR dataset as a population  from which random samples of 

different size k (60, 80, 100, 120) were repeatedly extracted (using the type of the first 

psychiatric contact as covariate). Figure 4 shows the normal quantile-quantile plots of the 

simulated sampling distribution of the regression coefficients for the different values of sample 

sizes considered. As can be seen, the simulated sampling distribution was different from the 

Gaussian for samples of size 60 and 80; however, when the number of subjects considered was 

120, the normal approximation appeared satisfactory. 

 
Figure 4. Normal quantile-quantile plots of the simulated sampling distribution of the regression coefficients 

for the type of the first psychiatric contact for 4 different values of sample sizes. 

 

Discussion 

Recurrent events arise frequently in medical settings and a number of different approaches have 

been developed to deal with multiple event survival data. However, despite the growing interest 

in the analytical techniques, these methods have not been commonly applied in the analysis of 
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data arising from clinical trials and/or observational studies published in medical journals, 

perhaps as a result of their complex structure. There is a general tendency to use simplistic 

methods employing the time to first event as the end point of the analysis. However, discarding 

information on subsequent events implies a loss of efficiency in the analysis and can provide a 

rather narrow perspective on the event process and covariate effects.  

In this paper, we have reviewed a simple and robust method that can be considered a 

conceptually straightforward counterpart of the Kaplan-Meier estimate and of the Cox model 

for the analysis of datasets with multiple failures per subject. This method relies on the 

cumulative mean function )(tM  and on a multiplicative effect of the covariates. Although one 

could specify a parametric form for )(tM , the non-parametric estimates of )(tM  and of its 

variance proposed by Lawless and Nadeau are robust since they are moment estimates. Also 

the regression coefficients are based on Poisson maximum likelihood estimates which are valid 

quite generally because they are generalised least squares, or quasi-likelihood, estimates, 

provided that, conditional on the covariate values, the τi’s  are determined independently of the 

event processes.  

The most important assumption of this method is that the end of observations times τi’s must 

be independent of the event processes. It is easy to think of situations in which this would not 

hold. For example, if we were studying system failures and systems with many failures had 

earlier been withdrawn from service. On the other hand, in the examples discussed, it is likely 

that the independence assumption is satisfied, since censoring occurred at a fixed time in all the 

subjects (in the skin tumour  dataset, the end of the follow-up period was the same for all the 

subjects, while in the SVPCR dataset all the patients were observed for 91 days). However, it 

is possible to check, at least informally, this independence for the skin cancer dataset, grouping 

the subjects according to their end-of-observation times into two groups (up to two years of 

follow up, with a dummy covariate xi equal to 0; between 3 and 5 years of follow up, with a 
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dummy covariate xi equal to 1) and then testing that the )(tM ’s in the two groups are equal. 

The estimate of the regression coefficient (–0.1415) together with its associated standard error 

(0.2134) gave no indication that the τi’s are not independent of the patterns of recurrences. As 

Lawless and Nadeau pointed out, the covariate iix τ=  provides a more sensitive check of the 

independence of the τi’s. Once again, in the case presented, the estimate of the regression 

coefficient (–0.0404) was comparable with the associated standard error (0.0514), meaning that 

the independence assumption cannot be rejected, as expected. If we specify a full probabilistic 

model for event processes, then the need for independent τi’s can be removed, but variance 

estimates for parameters would be less robust than the ones given in (7) if the specification of 

the model is not correct.   

With the hope of making the LN method more accessible to medical researchers, so that it can 

be a valuable addition to the set of statistical tools for the analysis of failure time data, we have 

provided a set of R functions which allows both a graphical display of the recurrence data and 

a more sensitive inference concerning the effect of covariates on the recurrence rate.  
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Appendix 

R functions 

To estimate the cumulative mean function as well as the regression coefficients of the LN 

proportional means model a set of functions are provided, all written using the native R 

language for maximum portability. The functions, which can be downloaded from the URL 

http://hostingwin.unitn.it/micciolo/pmr/index.html, are: 

cmfplot estimates the cumulative mean function (CMF) and produces a graphical plot. The 

user must supply three arguments, i.e. a vector tau, which contains the follow-up 

times, a matrix tempi with the recurrence times in the columns, a vector nr with 

the number of recurrences; optional arguments are the confidence level (set as 

default to 95%), the output (set to FALSE), the graphical plot of the CMF (set to 

TRUE) and of the confidence bands (set to TRUE). If the output argument out is set 

to TRUE, a matrix is given as output of the function to be employed for further 

analyses; the rows of the matrix are the times considered (with increments of 1 

unit), while the columns have the following meanings:    

1) the time t 

2) the estimate of the CMF at the time t 

3) the estimate of the standard error of (2) 

4) the lower limit of the confidence interval 

5) the upper limit of the confidence interval 

6) the number of subjects at risk at time t (i.e. ).(tδ ) 

7) the total number of recurrences observed at time t (i.e. ).(tn ) 

Note that 1)( =tiδ  when it τ≤  and 0)( =tiδ  otherwise. 

mfreg estimates the regression parameters of the LN proportional means model. The user 

must supply four arguments; the first three (tau, tempi, nr) are the same as those 
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described above; the fourth argument is the matrix xcov containing the values of 

the covariates (for categorical variables, the corresponding dummies must be 

provided). A further argument (betastart) can be set to TRUE if the user wants the 

estimates of the regression coefficients from Poisson regression on counts (without 

considering the recurrence times) to be used as starting values for the Newton 

algorithm. 

The output of mfreg is a list containing the following elements:  

1) $estimates with the estimates of the regression coefficients, their standard 

errors and the associated significance 

2) $asvar with the elements of the covariance matrix of the regression 

coefficients calculated according to formula 3.10 in (7) 

3) $basemf with the estimate of the baseline mean function ( )tm0  

4) $times with the corresponding times.  

nsolve R does not implement a function to solve a system of non-linear equations; on the 

other hand, the general-purpose optimisation function optim is available to find 

the minimum of a function. It is possible to use optim to find the solution of 

equations [4] by minimising the squared-norm of the set of functions (Ravi 

Varadhan has written a simple function nlsolve which performs this task by 

calling optim and using the quasi-Newton algorithm BFGS within optim and 

makes it available for R users). Here we propose a naïve algorithm which 

implements the standard Newton method in the R function nsolve which is called 

within cmfreg. The first two arguments of nsolve are two functions (see below), 

since in R function can be passed as arguments to functions. The first argument 

(fun) calculates and returns the values of the set of functions in equations [4] at a 

guessed value b
~

, while the second (jac) calculates the Jacobian matrix using the 
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current guess b
~

 for solution; the third argument is the vector of guessed values and 

the fourth is a list containing ancillary data needed for performing the previous 

calculations. The last two arguments of nsolve control the convergence of the 

algorithm. Some information on the control flow is written on the terminal. On 

exit, nsolve returns the numerical values of the functions at the proposed final 

solution.  

fun is the first argument of nsolve; calculates the values of the functions in the 

equations [4] at a guessed value b
~

.  

jac is the second argument of nsolve; calculates the Jacobian matrix using the current 

guess b
~

 for solution. 

 

To illustrate the use of the proposed functions, we employed the cutaneous epithelioma dataset. 

This dataset is supplied as an R workspace file (with extension .rdata). 

First, we (the user) had to load into the R workspace the set of functions: 

source(“mfreg.txt”).  

Next, we loaded the data set with the skin cancer data: load(“cutepi.rdata”). In R 

workspace there are now the vectors tau (follow-up times) and nr (total number of 

recurrences), each with 2557 elements, the matrix tempi (recurrence times) and the matrix 

Xcov, with 3 columns: gender (0 = males; 1 = females), histotype (0 = SCC; 1 = BCC) and the 

interaction.   

A look at the matrix tempi shows that the input of the data does not follows the “standard” 

counting process style of input. According to this style, a unit which has two recurrences and a 

censoring time has three observations; each observation has a start time, a stop time, and an 

indicator of whether the stop time is a recurrent event time or a censored time. As shown in 

Table 1, we preferred to store the follow-up times and the total number of recurrences observed 
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in each subject in two vectors, and the recurrence times in a matrix (with most of the cells 

possibly empty). 

The estimate of the cumulative mean number of recurrences, together with 95% confidence 

limits, can be obtained employing the function cmfplot. The following script displays the plot 

shown in the right panel of Figure 1. 

Script 1. 

allpts <- cmfplot(tau,tempi,nr,out=TRUE,plot=FALSE) 

plot(c(0,2180),c(0,0.3),type="n",xlab="Days",ylab="Cumulative Mean Number 

of Contacts") 

x <- allpts[,1] 

y <- allpts[,2]; lines(x,y,lty=1,lwd=2) 

y <- allpts[,4]; lines(x,y,lty=3,lwd=1.5) 

y <- allpts[,5]; lines(x,y,lty=3,lwd=1.5) 

 

The plot shown in the right panel of Figure 3, comparing the cumulative mean number of 

recurrences in males and females, can be reproduced using script 2. The first row selects male 

subjects (with the second dummy covariate equal to 0) and then the corresponding cumulative 

mean function is estimated (calling cmfplot and storing the result in mal). The third row selects 

females and then the corresponding cumulative mean function is estimated (calling cmfplot 

and storing the result in fem). The rows that follow plot the two “curves”. 

Script 2. 

ok <- which(Xcov[,2]==0) 

mal <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE) 

ok <- which(Xcov[,2]==1) 

fem <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE) 

plot(c(0,2180),c(0,0.32),type="n",xlab="Days",ylab="Cumulative Mean Number 

of Tumours",axes=FALSE) 

axis(2) 

axis(1,at=c(0,seq(365,365*6,by=365))) 

box() 

lines(fem[,1],fem[,2],type="l",lwd=2) 

lines(mal[,1],mal[,2],type="l",lty=3,lwd=2) 

legend(0,0.30,c("females","males"),lty=c(1,2),lwd=2) 
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To obtain the parameter estimates of the LN proportional means regression model shown in 

Table 2, script 3 was executed. Lines 1-3 evaluate the histotype effect; lines 4-6 evaluate the 

gender effect; lines 7-9 evaluate the joint effect of histotype and gender; lines 10-12 evaluate 

the effect of histotype, gender and of the interaction term. In all cases the result of the call to 

mfreg (which is a R “list”) is stored in the object fit; lines 3, 6, 9, 12 of script 3 extract from 

fit the parameter estimates (together with the associated standard errors). 

Script 3. 

xcov <- matrix(Xcov[,1],ncol=1) 

fit <- mfreg(tau,tempi,nr,xcov) 

fit$estimates 

xcov <- matrix(Xcov[,2],ncol=1) 

fit <- mfreg(tau,tempi,nr,xcov) 

fit$estimates 

xcov <- Xcov[,1:2] 

fit <- mfreg(tau,tempi,nr,xcov) 

fit$estimates 

xcov <- Xcov[,1:3] 

fit <- mfreg(tau,tempi,nr,xcov) 

fit$estimates 

 

Finally, to obtain the predicted cumulative mean number of recurrences in males and females 

and to plot them together with observed ones, script 4 can be employed. The first 14 rows are 

taken from scripts 2 and 3. In line 15 the predicted cumulative mean number of recurrences for 

males (whose dummy was coded 0) is calculated (employing the R function cumsum) after 

having extracted from the result of the fit the estimated baseline mean function (fit$basemf). 

In line 17 the predicted cumulative mean number of recurrences for females (whose dummy 

was coded 1) is calculated from the estimated baseline mean function and the gender regression 

coefficient (fit$basemf*exp(fit$est[1,1]). Lines 16 and 18 plot predicted “curves” as 

dotted lines.  

 

 



 27

Script 4. 

ok <- which(Xcov[,2]==0) 

mal <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE) 

ok <- which(Xcov[,2]==1) 

fem <- cmfplot(tau[ok],tempi[ok,],nr[ok],out=TRUE,plot=FALSE) 

plot(c(0,2180),c(0,0.32),type="n",xlab="Days",ylab="Cumulative Mean Number 

of Tumours",axes=FALSE) 

axis(2) 

axis(1,at=c(0,seq(365,365*6,by=365))) 

box() 

lines(fem[,1],fem[,2],type="l",lwd=2) 

lines(mal[,1],mal[,2],type="l",lty=3,lwd=2) 

legend(0,0.30,c("females","males"),lty=c(1,2),lwd=2) 

xcov <- matrix(Xcov[,2],ncol=1) 

fit <- mfreg(tau,tempi,nr,xcov) 

x <- fit$times; y <- cumsum(fit$basemf) 

lines(x,y,lty=3) 

x <- fit$times; y <- cumsum(fit$basemf*exp(fit$est[1,1])) 

lines(x,y,lty=3)  

 


